首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   8篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   13篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   10篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1968年   1篇
  1948年   1篇
排序方式: 共有119条查询结果,搜索用时 218 毫秒
11.
Dynamic alteration of soluble serum biomarkers in healthy aging   总被引:2,自引:1,他引:1  
Dysbalanced production of inflammatory cytokines is involved in immunosenescence in aging. The age-related changes of the levels of circulating inflammatory mediators and their clinical importance have not been investigated until recently. Still, little is known about the influence of aging on circulating levels of many cytokines, chemokines, growth factors, and angiogenic factors. In the present study, we evaluated the effect of aging on 30 different serum biomarkers involved in pro- and anti-inflammatory responses using multianalyte LabMAP Luminex technology. The simultaneous measurement of serological markers has been done in 397 healthy subjects between 40 and 80 years old. We demonstrated an increase in serum interferon-gamma-inducible chemokines (MIG and IP-10), eotaxin, chemoattractant for eosinophils, and soluble TNFR-II with advancing age. Serum levels of EGFR and EGF, important regulators of cell growth and differentiation, were decreased with age in healthy donors. These data suggest novel pathways, which may be involved in age-associated immunosenescence.  相似文献   
12.
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.  相似文献   
13.
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellow peroba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium berghei in mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.  相似文献   
14.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
15.
We have recently reported that MHC class I Ag-processing machinery (APM) component expression in dendritic cells (DC) might be down-regulated by tumor cells. However, the tumor-derived factors responsible for inhibition of the APM component expression in DC generated in the tumor microenvironment as well as potential protective mechanism have not yet been investigated. In this article, we demonstrate that expression of several MHC class I APM components, including MB1 (beta5), LMP2, LMP7, LMP10, and ERp57, is significantly down-regulated in human DC generated in the presence of primary oral squamous cell carcinoma cell lines or coincubated with purified gangliosides. Suppression of MHC class I APM component expression in DC generated in the presence of tumor cells was significantly attenuated by the inhibition of glucosyl transferase in tumor cells, suggesting that tumor-induced MHC class I APM component down-regulation in DC was mediated in part by oral squamous cell carcinoma-derived gangliosides. Furthermore, rIL-15 restored both tumor cell-induced and ganglioside-induced MHC class I APM component expression in DC, as well as their ability to present Ags to autologous Ag-specific T cells. These results demonstrate that IL-15 restores MHC class I APM component expression in DC down-regulated by tumor-derived gangliosides.  相似文献   
16.
Many models of local species interactions predict the occurrence of priority effects due to alternative stable equilibria (ASE). However, few empirical examples of ASE have been shown. One possible explanation for the disparity is that local ASE are difficult to maintain regionally in patch dynamic models. Here we examine two possible mechanisms for regional coexistence of species engaged in local ASE. Biotically generated heterogeneity (e.g., habitat modification that favors further invasion by conspecifics) results in regional exclusion of one species at equilibrium. In contrast, abiotic heterogeneity due to spatial variation in resource supply ratios generates local-scale ASE and ensures regional coexistence with sufficiently broad environmental gradients. Abiotic heterogeneity can result in a species that is the dominant competitor over some of its range being excluded if the area where it is dominant is too small. Biotic heterogeneity can lead to alternative stable landscapes or regional priority effects, while abiotic heterogeneity results in regional determinism. Broad environmental gradients in resource supply favor regional coexistence of species that exhibit local ASE.  相似文献   
17.
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.  相似文献   
18.
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones.  相似文献   
19.
A new analysis of the nearly century‐old Lotka–Volterra theory allows us to link species interactions to biodiversity patterns, including: species abundance distributions, estimates of total community size, patterns of community invasibility, and predicted responses to disturbance. Based on a few restrictive assumptions about species interactions, our calculations require only that the community is sufficiently large to allow a mean‐field approximation. We develop this analysis to show how an initial assemblage of species with varying interaction strengths is predicted to sort out into the final community based on the species’ predicted target densities. The sorting process yields predictions of covarying patterns of species abundance, community size, and species interaction strengths. These predictions can be tested using enrichment experiments, examination of latitudinal and productivity gradients, and features of community assembly.  相似文献   
20.
Akana E. Noto  Jonathan B. Shurin 《Oikos》2017,126(9):1308-1318
Environmental variability and the frequency of extreme events are predicted to increase in future climate scenarios; however, the role of fluctuations in shaping community composition, diversity and stability is not well understood. Identifying current patterns of association between measures of community stability and climatic means and variability will help elucidate the ways in which altered variability and mean conditions may change communities in the future. Salt marshes provide essential ecosystem services and are increasingly threatened by sea‐level rise, land‐use change, eutrophication and predator loss, yet the effects of temporal environmental variation on salt marshes remain unknown. We synthesized long‐term plant community monitoring data from 11 sites on both coasts of the United States. We used an information‐theoretic approach and linear models to determine the associations among long‐term mean conditions, interannual environmental variability, and plant community stability and diversity. We found that salt marsh community stability and diversity were more strongly related to long‐term means of temperature and precipitation than to interannual variation. Warm and wet environments had fewer species and less turnover among years. Our results suggest that communities in cool, dry environments may be more resilient to climate warming due to greater species richness and turnover. Mean conditions are sufficient to predict contemporary patterns of salt marsh plant community dynamics, but environmental variability may have stronger impacts as it increases with climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号